login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: keyword:new
Displaying 1-10 of 403 results found. page 1 2 3 4 5 6 7 8 9 10 ... 41
     Sort: relevance | references | number | modified | created      Format: long | short | data
A372327 Decimal expansion of Pi^(1/2)*Gamma(1/18)/(9*Gamma(5/9)). +0
0
2, 1, 4, 9, 9, 9, 5, 4, 5, 8, 4, 9, 2, 0, 4, 7, 2, 3, 3, 9, 1, 2, 2, 2, 9, 4, 5, 6, 6, 3, 6, 5, 0, 8, 7, 5, 6, 3, 8, 7, 4, 8, 3, 1, 5, 1, 5, 7, 3, 7, 7, 8, 7, 9, 5, 6, 1, 7, 4, 7, 2, 8, 0, 3, 9, 8, 5, 7, 2, 7, 3, 5, 9, 2, 5, 4, 1, 7, 4, 9, 6, 1, 0, 4, 4, 4, 3, 5, 7, 5, 0, 0, 8, 3, 9, 7, 7, 8, 6, 5, 2, 6, 9, 6, 6, 9, 6, 8, 9, 2, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Constant from generalized Pi integrals: the case of n=18.
LINKS
FORMULA
Equals 2*Integral_{x=0..1} dx/sqrt(1-x^18).
Equals Gamma(1/18)^2 / (9 * 2^(8/9) * Gamma(1/9)). - Vaclav Kotesovec, Apr 29 2024
EXAMPLE
2.14999545849204723391222945664...
MATHEMATICA
RealDigits[Sqrt[Pi]/9*Gamma[1/18]/Gamma[5/9], 10, 5001][[1]]
CROSSREFS
KEYWORD
nonn,cons,new
AUTHOR
Takayuki Tatekawa, Apr 28 2024
STATUS
approved
A370354 Composite numbers k that share a factor with sopfr(k), the sum of the primes dividing k, with repetition. +0
0
4, 8, 9, 16, 18, 24, 25, 27, 30, 32, 36, 42, 49, 50, 60, 64, 66, 70, 72, 78, 81, 84, 98, 100, 102, 105, 110, 114, 120, 121, 125, 126, 128, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 169, 170, 174, 180, 182, 186, 190, 192, 195, 196, 200, 204, 216, 220, 222, 228, 230, 231, 234, 238, 240 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
All prime powers, see A246547, are terms.
LINKS
EXAMPLE
18 is a term as 18 = 2 * 3 * 3, and soprf(18) = 2 + 3 + 3 = 8, which shares a factor with 18.
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Scott R. Shannon, May 06 2024
STATUS
approved
A372524 The smallest composite number k that shares exactly n distinct prime factors with sopfr(k), the sum of the primes dividing k, with repetition. +0
0
6, 4, 30, 1530, 40530, 37838430, 900569670 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
EXAMPLE
a(0) = 6 as 6 = 2 * 3 while sopfr(6) = 5, which shares 0 distinct prime factors with 6.
a(1) = 4 as 4 = 2 * 2 while sopfr(4) = 4 = 2 * 2, which shares 1 distinct prime factor, 2, with 4.
a(2) = 30 as 30 = 2 * 3 * 5 while sopfr(30) = 10 = 2 * 5, which shares 2 distinct prime factors, 2 and 5, with 30.
a(3) = 1530 as 1530 = 2 * 3^2 * 5 * 17 while sopfr(1530) = 30 = 2 * 3 * 5, which shares 3 distinct primes factors, 2, 3 and 5, with 1530.
a(4) = 40530 as 40530 = 2 * 3 * 5 * 7 * 193 while sopfr(40530) = 210 = 2 * 3 * 5 * 7, which shares 4 distinct prime factors, 2, 3, 5 and 7, with 40530.
a(5) = 37838430 as 37838430 = 2 * 3^2 * 5 * 7 * 17 * 3533 while sopfr(37838430) = 3570 = 2 * 3 * 5 * 7 * 17, which shares 5 distinct prime factors, 2, 3, 5, 7 and 17, with 37838430.
a(6) = 900569670 as 900569670 = 2 * 3 * 5 * 7 * 11 * 13 * 29989 while sopfr(900569670) = 30030 = 2 * 3 * 5 * 7 * 11 * 13, which shares 6 distinct prime factors, 2, 3, 5, 7, 11 and 13, with 900569670.
CROSSREFS
KEYWORD
nonn,more,new
AUTHOR
Scott R. Shannon, May 05 2024
STATUS
approved
A372554 a(n) = A050602(n, 2n+1). +0
0
0, 2, 0, 2, 0, 4, 2, 2, 0, 2, 0, 4, 2, 3, 2, 2, 0, 2, 0, 2, 0, 6, 4, 4, 2, 2, 2, 3, 2, 3, 2, 2, 0, 2, 0, 2, 0, 4, 2, 2, 0, 2, 0, 6, 4, 4, 4, 4, 2, 2, 2, 2, 2, 5, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 0, 2, 0, 2, 0, 4, 2, 2, 0, 2, 0, 4, 2, 3, 2, 2, 0, 2, 0, 2, 0, 8, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
PROG
(PARI)
A050602sq(x, y) = if(!bitand(x, y), 0, 1+A050602sq(bitxor(x, y), 2*bitand(x, y)));
A372554(n) = A050602sq(n, n+n+1);
CROSSREFS
Cf. A022340 (positions of 0's), A050602.
Cf. A002450 (seems to give the positions of records).
Cf. also A329603.
KEYWORD
nonn,new
AUTHOR
Antti Karttunen, May 05 2024
STATUS
approved
A372454 a(n) = A372444(n) - A086893(1+A372449(n)). +0
0
6, -48, 2560, -1572864, -3848290697216, 6649092007880460460883968, -18999521285301737936647902825311679255527123058688, 76895533293152762966220781422103876125697362804839499718093497881599910128103059800826635129716736 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The difference between A372444(n) and the term of A086893 with the same binary length.
LINKS
FORMULA
a(n) = A372444(n) - A086893(1+A000523(A372444(n))).
a(0) = A372453(0) = 6; and for n > 0, a(n) = 4^A372448(n-1) * A372453(n).
EXAMPLE
The term of A086893 that has same binary length as A372444(0) = 27 is 21 [as 21 = 10101_2 in binary, and 27 = 11011_2 in binary], therefore a(0) = 27-21 = 6.
The term of A086893 that has same binary length as A372444(1) = 165 is 213, therefore a(1) = 165-213 = -48.
PROG
(PARI)
A000523(n) = logint(n, 2);
A371094(n) = { my(m=1+3*n, e=valuation(m, 2)); ((m*(2^e)) + (((4^e)-1)/3)); };
A372444(n) = { my(x=27); while(n, x=A371094(x); n--); (x); };
A086893(n) = (if(n%2, 2^(n+1), 2^(n+1)+2^(n-1))\3);
A372454(n) = { my(x=A372444(n)); (x - A086893(1+A000523(x))); };
(PARI) A372454(n) = if(!n, A372453(n), (4^A372448(n-1))*A372453(n));
CROSSREFS
KEYWORD
sign,new
AUTHOR
Antti Karttunen, May 05 2024
STATUS
approved
A372452 Number of terms of A086893 in the interval [A372444(n), A372444(1+n)]. +0
0
2, 6, 10, 21, 41, 80, 162, 324, 646, 1294, 2586, 5173, 10345, 20691, 41381, 82760, 165522, 331044, 662089, 1324177, 2648353, 5296707, 10593413, 21186827, 42373652, 84747305, 169494609, 338989216, 677978435, 1355956869, 2711913736, 5423827472, 10847654948, 21695309896, 43390619791, 86781239586, 173562479173, 347124958344 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The formula involving A372451 and A372453 shows that each term is at most +-1 from the corresponding term of A372451, that are the first differences of A372449.
LINKS
FORMULA
a(n) = A372286(A372444(n)).
a(n) = A372451(n) + [A372453(n)<=0] - [A372453(1+n)<0], where [ ] is the Iverson bracket, yielding 1 or 0 depending on whether the given inequivalence holds or does not hold.
EXAMPLE
Between A372444(0)=27 and A372444(1)=165 there are two terms (53 and 85) of A086893, therefore a(0) = 2.
Between A372444(1)=165 and A372444(2)=8021 there are six terms (213, 341, 853, 1365, 3413, 5461) of A086893, therefore a(1) = 6.
Between A372444(2)=8021 and A372444(3)=12408149 there are 10 terms (13653, 21845, 54613, 87381, 218453, 349525, 873813, 1398101, 3495253, 5592405) of A086893, therefore a(2) = 10.
PROG
(PARI) A372452(n) = A372451(n)+(A372453(n)<=0)-(A372453(1+n)<0); \\ Uses also code from A372451 and A372453.
CROSSREFS
Column 14 of A372285.
KEYWORD
nonn,new
AUTHOR
Antti Karttunen, May 05 2024
STATUS
approved
A372230 Triangular array read by rows. T(n,k) is the number of size k circuits in the linear matroid M[A] where A is the n X 2^n-1 matrix whose columns are the nonzero vectors in GF(2)^n, n>=2, 3<=k<=n+1. +0
1
1, 7, 7, 35, 105, 168, 155, 1085, 5208, 13888, 651, 9765, 109368, 874944, 3999744, 2667, 82677, 1984248, 37039296, 507967488, 4063739904, 10795, 680085, 33732216, 1349288640, 43177236480, 1036253675520, 14737830051840 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
2,2
COMMENTS
For n>=2 and 3<=k<=n, to construct a size k circuit of M[A]: Choose a basis b_1,b_2,...,b_{k-1} of a k-1 dimensional subspace of GF(2)^n. Append the vector b_1 + b_2 + ... + b_{k-1}.
REFERENCES
J. Oxley, Matroid Theory, Oxford Graduate Texts in Mathematics, 1992, page 8.
LINKS
FORMULA
T(n,k) = A022166(n,k-1)*A053601(k-1)/k.
T(n,3) = A006095.
T(n,n+1) = A053601(n)/(n+1).
EXAMPLE
Triangle begins ...
1;
7, 7;
35, 105, 168;
155, 1085, 5208, 13888;
651, 9765, 109368, 874944, 3999744;
2667, 82677, 1984248, 37039296, 507967488, 4063739904;
...
MATHEMATICA
nn = 8; Map[Select[#, # > 0 &] &, Table[Table[PadRight[Table[Product[(2^n - 2^i)/(2^k - 2^i), {i, 0, k - 1}], {k, 2, n}], nn], {n, 2, nn}][[All, j]]* Table[Product[2^n - 2^i, {i, 0, n - 1}]/(n + 1)!, {n, 2, nn}][[j]], {j, 1, nn - 1}] // Transpose] // Grid
CROSSREFS
Cf. A022166, A053601, A006095, A372350 (row sums).
KEYWORD
nonn,tabl,new
AUTHOR
Geoffrey Critzer, Apr 28 2024
STATUS
approved
A372582 Numbers k such that 2*k + 3 and 3*k + 2 are semiprimes. +0
0
11, 24, 31, 44, 69, 71, 92, 99, 100, 101, 107, 108, 109, 123, 125, 128, 131, 132, 148, 160, 181, 184, 204, 207, 224, 235, 243, 245, 249, 251, 263, 267, 271, 288, 289, 297, 304, 332, 347, 348, 355, 357, 359, 360, 364, 371, 373, 380, 384, 389, 400, 420, 423, 445, 448, 449, 451, 459, 460, 465, 485 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The first k where k, k + 1 and k + 2 are all terms is 99. There is no k where k, k + 1, k + 2 and k + 3 are all terms, because 3 * t + 2 is divisible by 4 for t = one of these.
LINKS
EXAMPLE
a(3) = 31 is a term because 2 * 31 + 3 = 65 = 5 * 13 and 3 * 31 + 2 = 95 = 5 * 19 are both semiprimes.
MAPLE
filter:= k -> numtheory:-bigomega(3*k+2) = 2 and numtheory:-bigomega(2*k+3) = 2:
select(filter, [$1..1000]);
MATHEMATICA
s = {}; Do[If[2 == PrimeOmega[2*k + 3] == PrimeOmega[3*k +
2], AppendTo[s, k]], {k, 10^3}]; s
CROSSREFS
Cf. A001358.
KEYWORD
nonn,new
AUTHOR
Zak Seidov and Robert Israel, May 05 2024
STATUS
approved
A372550 Primes such that the next 10 prime gaps are all distinct. +0
0
15919, 15923, 24113, 24517, 30509, 34883, 34897, 36107, 49201, 52747, 56249, 64927, 64937, 66107, 66109, 66191, 67247, 67261, 67271, 67273, 68147, 70639, 70657, 70663, 70667, 70687, 70709, 70717, 71549, 75797, 78317, 78929, 79979, 81083, 81101, 83701, 88301, 94117, 94603, 94613, 96497, 97609 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 24113 is a term because it is prime, the next 10 primes are 24121, 24133, 24137, 24151, 24169, 24179, 24181, 24197, 24203, 24223, and the gaps between these 11 primes are 8, 12, 4, 14, 18, 10, 2, 16, 6, 20 which are all distinct.
MAPLE
P:= [seq(ithprime(i), i=1..11)]:
R:= NULL: count:= 0:
while count < 100 do
P:= [op(P[2..-1]), nextprime(P[-1])];
if nops(convert(P[2..-1]-P[1..-2], set))=10 then
count:= count+1; R:= R, P[1];
fi
od:
R;
MATHEMATICA
s = {};
Do[If[10 == Length[Union[Differences[Prime[Range[k, k + 10]]]]], AppendTo[s,
Prime[k]]], {k, , 10000}]; s
CROSSREFS
Cf. A079007.
KEYWORD
nonn,new
AUTHOR
Zak Seidov and Robert Israel, May 05 2024
STATUS
approved
A372528 Expansion of g.f. A(x) satisfying A( -x * A( x - x^2 ) ) = -x^2. +0
0
1, 1, 3, 8, 22, 65, 200, 637, 2090, 7021, 24041, 83611, 294511, 1048376, 3765080, 13623820, 49617990, 181733222, 668947823, 2473277248, 9180700787, 34200489886, 127819746470, 479124333321, 1800838945043, 6785517883825, 25626477179000, 96988079848223, 367794448974300, 1397301289617580 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n, along with its series reversion R(x), satisfy the following formulas.
(1) A( -x*A(x - x^2) ) = -x^2.
(2) A(x - x^2) = R(-x^2)/(-x).
(3) (R(x) - R(-x))^2 + 2*(R(x) + R(-x)) = 0.
(4) R(x) = R(-x) - 1 + sqrt(1 - 4*R(-x)).
(5) A(x) = -A( x - 1 + sqrt(1 - 4*x) ).
(6) A(x) = -A(x - 2*C(x)) where C(x) = -C(x - 2*C(x)) is a g.f. of the Catalan numbers (A000108).
(7) A( -A(x)*C(x) ) = -C(x)^2 where C(x) = (1 - sqrt(1 - 4*x))/2 is a g.f. of the Catalan numbers (A000108).
EXAMPLE
G.f.: A(x) = x + x^2 + 3*x^3 + 8*x^4 + 22*x^5 + 65*x^6 + 200*x^7 + 637*x^8 + 2090*x^9 + 7021*x^10 + 24041*x^11 + 83611*x^12 + ...
RELATED SERIES.
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x - x^2 - x^3 + 2*x^4 + 4*x^5 - 9*x^6 - 18*x^7 + 44*x^8 + 91*x^9 - 234*x^10 - 496*x^11 + 1318*x^12 + ...
where A(x - x^2) = R(-x^2)/(-x).
Also, the bisections B1 and B2 of R(x) are
B1 = (R(x) - R(-x))/2 = x - x^3 + 4*x^5 - 18*x^7 + 91*x^9 - 496*x^11 + 2839*x^13 - 16836*x^15 + 102545*x^17 - 637733*x^19 + ...
B2 = (R(x) + R(-x))/2 = -x^2 + 2*x^4 - 9*x^6 + 44*x^8 - 234*x^10 + 1318*x^12 - 7722*x^14 + 46594*x^16 - 287611*x^18 + 1807720*x^20 + ...
and satisfy B1^2 + B2 = 0 and A(-x*B1) = -B1^2.
SPECIFIC VALUES.
A( -A(2/9) / 3 ) = -1/9 where
A(2/9) = 0.3655811677545134614272600644874552972994602150418984...
A( -A(3/16) / 4 ) = -1/16 where
A(3/16) = 0.2645434685642398513217156896362957133168212272114320...
A( -A(4/25) / 5 ) = -1/25 where
A(4/25) = 0.2076566162630115730635446744577181791494166261819659...
A( -A(5/36) / 6 ) = -1/36 where
A(5/36) = 0.1711609712404346976409014231532840797963445277760447...
PROG
(PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff( x^2 + subst(Ser(A), x, -x*subst(Ser(A), x, x - x^2) ), #A)); A[n+1]}
for(n=1, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, May 05 2024
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 41

Search completed in 0.124 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 6 10:47 EDT 2024. Contains 372293 sequences. (Running on oeis4.)