Enrique Navarrete ${ }^{1}$

Starting with $a(1)=1$ and not allowing the digit $0, a(n)=$ smallest nonnegative integer not yet in the sequence such that the last digit of $a(n-1)$ plus the first digit of $a(n)$ is equal to $k, k=1, \ldots, 9$. This defines 9 finite sequences, each of length equal to the $k^{\text {th }}$ polygonal number $k=1, \ldots, 9$ (OEIS A002061). For $k=10$, the sequence is infinite.

Here are the sequences:
$\mathrm{k}=1: \quad 1 . \quad($ length $=1$)
$\mathrm{k}=2: 1,11,12$. (length $=3$)
$k=3: 1,2,11,21,22,12,13 . \quad($ length $=7$)
$\mathrm{k}=4: 1,3,11,31,32,2,21,33,12,22,23,13,14 . \quad($ length $=13)$
$\mathrm{k}=5: 1,4,11,41,42,3,2,31,43,21,44,12,32,33,22,34$, 13, 23, 24, 14, 15. (length $=21$)
$\mathrm{k}=6: 1,5,11,51,52,4,2,41,53,3,31,54,21,55,12,42,43$, $32,44,22,45,13,33,34,23,35,14,24,25,15,16$. (length $=31$)
$\mathrm{k}=7: 1,6,11,61,62,5,2,51,63,4,3,41,64,31,65,21,66$, $12,52,53,42,54,32,55,22,56,13,43,44,33,45,23,46,14$, $34,35,24,36,15,25,26,16,17$. (length $=43$)
$\mathrm{k}=8: 1,7,11,71,72,6,2,61,73,5,3,51,74,4,41,75,31$, $76,21,77,12,62,63,52,64,42,65,32,66,22,67,13,53,54$, $43,55,33,56,23,57,14,44,45,34,46,24,47,15,35,36,25$, 37, 16, 26, 27, 17, 18. (length $=57$)
$\mathrm{k}=9: 1,8,11,81,82,7,2,71,83,6,3,61,84,5,4,51,85$, $41,86,31,87,21,88,12,72,73,62,74,52,75,42,76,32,77$, $22,78,13,63,64,53,65,43,66,33,67,23,68,14,54,55,44$, $56,34,57,24,58,15,45,46,35,47,25,48,16,36,37,26,38$, 17, 27, 28, 18, 19. (length $=73$)

Some terms for $k=10: 1,9,11,91,92,8,2,81,93,7,3,71,94$, $6,4,61,95,5,51,96,41,97,31,98,21,99,12,82,83,72,84$, 62, 85, 52, 86, 42, 87, 32, 88, 22, 89, 13, 73, 74, 63, 75, 53, 76, $43,77,33,78,23,79,14,64,65,54,66,44,67,34,68,24,69$, 15, 55, 56, 45, 57, 35, 58, 25, 59, 16, 46, 47, 36, 48, 26, 49, 17, 37, 38, 27, 39, 18, 28, 29, 19, 111, 911, 912, 811, 913, 711, 914, 611, 915, 511, 916, 411, 917, 311, 918, 211, 919, 112, 812, 813, 712, ...

Proof for $k=1, \ldots$, 9: Note that for each k, the numbers in the sequence can be arranged in a rectangle consisting of k rows (the starting digits) and (k-1) columns (the ending digits). The sequence ends as soon as a number ending with the digit k appears. This happens at the term 1 k , which lies out of the rectangle. Hence the total number of terms in the sequence is $k(k-1)+1$, which is the $k^{\text {th }}$ polygonal number.

For example, for $k=5$, the terms of the sequence in rectangular form (plus the additional term 1 k that ends the sequence) are:

1	2	3	4	
21	22	23	24	
31	32	33	34	
41	42	43	44	
11	12	13	14	15

[^0]
[^0]: ${ }^{1}$ Enrique Navarrete, Universidad de Antioquia, Universidad Pontificia Bolivariana

